
DUM DUM MOTIJHEEL COLLEGE

 DEPARTMENT OF COMPUTER SCIENCE

B.Sc. Computer Science (Hons) CBCS Syllabus

Issued by the West Bengal State University

With effect from 2018-19

Programme Specific Outcomes

 After Successful completion of undergraduate program in Computer Sciecne students will
gain a strong understanding of fundamental concepts in computer science, including
algorithms, data structures, computer organization, and software engineering principles.

 Develop proficiency in multiple programming languages and the ability to design,
implement, and debug complex software systems.

 Acquire strong problem-solving skills and the ability to apply computational thinking to
solve real-world problems.

 Gain a solid understanding of theoretical aspects of computer science, including formal
languages, automata theory, and complexity theory.

 Learn the principles of database design, implementation, and management, including
relational database systems.

 Understand the fundamentals of computer networks and cyber security, including protocols,
network design, and security measures.

 Gain knowledge about the design and functioning of operating systems, including
process management, memory management, and file systems.

 Explore concepts and techniques in artificial intelligence, machine learning, and data
science.

 Understand the entire software development lifecycle, from requirements analysis and design
to testing, deployment, and maintenance.

 Foster the ability to engage in research, stay updated with the latest advancements in
technology, and contribute to innovation in the field.

DUM DUM MOTIJHEEL COLLEGE

Course Outcome or Learning Outcome

Three year B.A. /B.Sc. degree course

Under CBCS semester system

HONOURS COURSE IN COMPUTER SCIENCE

With effect from the session: 2018 – 2019

Course Name: Core Course-1

Course Code: CMSACOR01T and CMSACOR01P

Topic Name: Programming Fundamental using C/C++

Course Outcome: After completion of this course student will understand and apply fundamental programming

constructs such as variables, data types, operators, loops, and conditional statements in both C and

C++. earn to define and use functions for code modularity, reusability, and maintainability.

Understand the concept of parameter passing and return values. Introduce basic data structures like

arrays, linked lists, stacks, and queues. Learn how to manipulate and organize data efficiently.

Understand memory allocation and deallocation in C/C++ and gain insights into pointers and

dynamic memory allocation. Explore file I/O operations in C/C++ to read from and write to files.

Understand how to manipulate data stored in files. students will learn about OOP principles,

including classes, objects, inheritance, polymorphism, encapsulation, and abstraction. Develop

problem-solving skills through the implementation of algorithms and logical thinking using C/C++

programming constructs. Acquire skills in debugging code and handling errors effectively. Learn to use

debugging tools and techniques. Understand and apply coding standards and best practices for writing

clean, readable, and maintainable code. Gain an understanding of basic algorithms and their efficiency.

Practice algorithmic thinking to solve computational problems. Apply learned concepts through hands-

on projects. This may involve writing small to medium-sized programs to solve real- world problems,

reinforcing the practical application of programming skills.

Course Name: Core Course-2

Course Code: CMSACOR02T and CMSACOR02P
Topic Name: Computer System Architecture

Course Outcome: From this course students will gain a deep understanding of the organization and components of a

computer system, including the CPU, memory, input/output devices, and the interconnection
structure. Learn about instruction sets, addressing modes, and the design principles of the
instruction set architecture. Understand how instructions are executed by the CPU. Explore the
design and microarchitecture of processors, including pipelining, instruction-level parallelism, and
techniques for improving CPU performance. Understand the memory hierarchy, including cache
memory, main memory, and secondary storage. Learn about memory management techniques and their
impact on system performance. Study the principles of input/output systems, including I/O
interfaces, interrupt handling, and data transfer mechanisms between the CPU and peripherals.
Explore bus systems and interconnection networks that facilitate communication between different
components of a computer system. Understand the principles of parallel and distributed computing,
including multi-core processors, parallel architectures, and the challenges of distributed systems.
Gain hands-on experience with assembly language programming to reinforce the understanding of
computer architecture concepts. Learn techniques for performance evaluation and optimization of
computer systems, including benchmarking, profiling, and tuning. Stay updated with current trends and
advancements in computer architecture, including emerging technologies and architectures.

Course Name: Core Course-3

Course Code: CMSACOR03T and CMSACOR03P
Topic Name: Programming in Java

Course Outcome: Students will understand the basic syntax, data types, and control flow structures in Java, including

variables, loops, and conditional statements. Gain a solid foundation in OOP principles, including

classes, objects, inheritance, polymorphism, encapsulation, and abstraction. Familiarize yourself

with the Java Standard Library (Java API) and learn how to use pre-built classes and methods for

common programming tasks. Understand the concept of exceptions in Java and learn how to handle

errors and exceptions in a program. Explore basic GUI programming using libraries such as Swing or

JavaFX. Learn to create interactive and user-friendly applications. Gain proficiency in reading from

and writing to files, understanding file handling operations in Java. Learn about the Java

Collections Framework, including data structures such as lists, sets, and maps. Understand how to

use these structures for efficient data manipulation. Understand the basics of multithreading in Java,

including creating and managing multiple threads to achieve concurrent execution. Explore

networking concepts and how to implement networked applications in Java, including socket

programming.

Course Name: Core Course-4

Course Code: CMSACOR04T and CMSACOR04P
Topic Name: Discrete Structure

Course Outcome: Students will understand the basics of set theory, including set operations, subsets, and set relations.

Apply set theory concepts to solve problems and model real-world situations. Learn the principles of

propositional logic, including logical operators, truth tables, and logical equivalences. Develop skills in

constructing and analyzing logical expressions. Extend logical reasoning to predicate logic, including

quantifiers and proofs. Understand how to express statements about elements in a set using

predicate logic. Acquire proficiency in various proof techniques, such as direct proofs, proof by

contrapositive, proof by contradiction, and mathematical induction. Explore fundamental concepts

in number theory, including divisibility, prime numbers, greatest common divisors, and modular

arithmetic. Understand counting principles, permutations, combinations, and the binomial theorem.

Apply combinatorial concepts to solve problems related to arrangements and selections. Study basic

concepts in graph theory, including vertices, edges, paths, cycles, and connectivity. Analyze and

solve problems related to graph representations. Explore the concepts of relations and functions,

including equivalence relations, partial orders, and injections/surjections. Understand how to

represent and analyze relationships between sets. Introduce the concept of finite state machines

and understand their application in modeling and solving problems related to computation.

Learn the basics of formal languages, regular languages, and finite automata. Understand how

automata theory is connected to the study of programming languages and computation.

Introduce basic concepts of algorithmic complexity and analyze the efficiency of algorithms in

terms of time and space complexity. Relate discrete structures to their applications in computer

science, such as algorithm design, database management, and network design.

Course Name: Core Course-5

Course Code: CMSACOR05T and CMSACOR05P
Topic Name: Data Structure

Course Outcome: Students will gain a solid understanding of fundamental data structures such as arrays, linked lists,

stacks, and queues. Learn to analyze the time and space complexity of algorithms, with a focus on

understanding the efficiency of data structure operations. Study hierarchical data structures,

including binary trees, binary search trees, and AVL trees. Understand operations on trees and their

applications. Explore graph data structures and algorithms, including graph traversal, shortest path

algorithms, and graph connectivity. Understand the concept of hashing and hash tables. Learn how to

implement and use hash functions to achieve efficient data retrieval. Study heap data structures and

their applications, including priority queues and heap-based sorting algorithms. Explore more

advanced data structures, such as tries and B-trees, and understand their applications in

efficient data storage and retrieval.

Course Name: Core Course-6

Course Code: CMSACOR06T and CMSACOR06P
Topic Name: Operating System

Course Outcome: Define what an operating system is and explain its role in managing computer hardware and

software resources. Describe the evolution of operating systems and their key components.

Understand the concept of a process and the role of process management in an OS. Learn about

process scheduling algorithms and how they impact system performance. Explain memory

hierarchy and the role of the operating system in managing different types of memory. Understand

virtual memory concepts, paging, and segmentation. Describe file system organization and

structure. Learn about file operations, directory structures, and file access control. Understand I/O

devices and their interaction with the operating system. Learn about I/O scheduling and how it

impacts system performance. Explore issues related to concurrent processes and the need for

synchronization. Study synchronization mechanisms, such as locks and semaphores. Identify and

analyze deadlock situations in a system. Learn strategies for deadlock prevention, avoidance, and

recovery. Understand the importance of security in operating systems. Learn about access control,

authentication, and other security mechanisms. Analyze real-world operating systems as case

studies. Gain insights into the design principles and trade-offs in building operating systems.

Evaluate the performance of an operating system and identify bottlenecks. Explore contemporary

topics and emerging trends in operating systems, such as virtualization, cloud computing, and

containerization.

Course Name: Core Course-7

Course Code: CMSACOR07T and CMSACOR07P
Topic Name: Computer Networks

Course Outcome: Define computer networks and understand their importance in modern computing. Explore the

historical development and evolution of computer networks. Study different network topologies and

their advantages and disadvantages. Understand various networking protocols and their roles in

communication. Explore the functionalities of the physical and data link layers of the OSI model. Learn

about error detection and correction mechanisms. Understand the role of the network layer in routing

and forwarding data. Study common routing algorithms and protocols. Explore the functions of

the transport layer in end-to-end communication. Learn about flow control, error recovery, and

congestion control mechanisms. Examine the application layer protocols and their role in

supporting network applications. Study common application layer protocols, such as HTTP, FTP, and

DNS. Understand the challenges and protocols associated with wireless and mobile

communication. Explore technologies like Wi-Fi, Bluetooth, and cellular networks. Learn about

common security threats in computer networks. Explore security mechanisms, such as firewalls,

encryption, and intrusion detection systems. Understand the principles of network management and

monitoring. Analyze real-world case studies of successful network implementations. Apply

theoretical knowledge to practical scenarios. Gain practical experience through hands-on labs and

projects. Configure and troubleshoot network setups to reinforce theoretical concepts.

Course Name: Core Course-8

Course Code: CMSACOR08T and CMSACOR08P
Topic Name: Design & Analysis of Algorithm
Course Outcome: Understand the fundamental concepts of algorithms, including correctness, efficiency, and

optimality. Learn how to express algorithms using pseudocode or a programming language.

Explore various algorithm design paradigms, such as divide and conquer, dynamic programming, and

greedy algorithms. Understand when to apply each design technique to solve specific types of problems.

Learn how to analyze the time complexity of algorithms using Big-O notation. Understand the

importance of worst-case, average-case, and best-case analysis. Understand the concept of

recursion and its application in algorithm design. Learn how to use backtracking to solve problems with

multiple decision points. Study and implement various sorting algorithms, such as quicksort, mergesort,

and heapsort. Explore searching algorithms, including binary search. Understand and implement

graph traversal algorithms (e.g., depth-first search, breadth-first search). Learn about graph algorithms

for shortest paths and minimum spanning trees. Explore dynamic programming as a technique for

solving optimization problems. Implement dynamic programming solutions for various problems. Learn

the principles of greedy algorithms and when to use them. Implement greedy algorithms for solving

optimization problems. Understand the concept of NP- completeness and the implications for

algorithmic problem-solving. Learn about reductions and the importance of solving hard problems

efficiently. Explore algorithms that use randomness for solving problems. Understand the concept

of probabilistic analysis. Learn about approximation algorithms for NP-hard optimization problems.

Understand the trade-off between optimality and efficiency. Apply algorithmic design and analysis

techniques to solve real-world problems. Practice translating problems into algorithmic solutions.

Develop the ability to articulate algorithmic solutions clearly in both written and oral formats.

Present and discuss algorithmic solutions in a structured manner.

Course Name: Core Course-9

Course Code: CMSACOR09T and CMSACOR09P
Topic Name: Software Engineering

Course Outcome: Understand the fundamental concepts and importance of software engineering in the development

life cycle. Explore the key activities involved in software engineering processes. Learn about

various models of SDLC, such as Waterfall, Agile, and Iterative models. Understand the strengths and

weaknesses of different development methodologies. Study the process of gathering, analyzing, and

documenting software requirements. Learn how to manage and prioritize requirements

throughout the project. Understand the principles of system design, including architectural design and

detailed design. Learn how to create design documentation and make design decisions. Explore best

practices for coding, including code readability, maintainability, and documentation.

Understand how to implement designs into executable code. Learn various testing techniques and

strategies to ensure software quality. Understand the importance of test planning and

test documentation. Study the challenges and techniques involved in software maintenance.

Understand version control and configuration management. Learn project management principles

specific to software engineering. Understand how to estimate project effort, schedule tasks, and

manage resources. Explore metrics for measuring software quality, productivity, and

performance. Understand how to use metrics for project tracking and improvement. Identify and

analyze potential risks in software projects. Learn risk mitigation and contingency planning

strategies. Understand collaborative development practices, including version control systems (e.g.,

Git). Learn about tools for collaboration, issue tracking, and continuous integration. Explore ethical

considerations in software engineering. Understand the responsibilities of software engineers in a

professional context. Emphasize the importance of clear and effective communication in software

development. Learn how to create and maintain project documentation.

Course Name: Core Course-10

Course Code: CMSACOR10T and CMSACOR10P
Topic Name: DBMS

Course Outcome: The Database Management System (DBMS) course aims to equip students with the knowledge and

skills necessary to understand, design, and manage databases effectively. Students typically learn

fundamental concepts of database systems, including data modeling, normalization, and query

languages. They gain proficiency in designing relational databases, creating and manipulating

database schemas, and implementing complex queries using SQL. The course also covers topics

such as indexing, transaction management, and database security. Additionally, students are

introduced to various types of database models and gain insights into emerging trends in database

technologies. By the end of the course, students are expected to be capable of designing and

implementing robust database solutions, ensuring data integrity, and optimizing database

performance in real-world applications. The understanding of database management principles

acquired in this course is essential for students pursuing careers in software development, data

analysis, and other fields where efficient and organized data storage and retrieval are critical.

Course Name: Core Course-11

Course Code: CMSACOR11T and CMSACOR11P
Topic Name: Internet Technology

Course Outcome: The Internet Technology course with a focus on JSP (JavaServer Pages) and JavaScript is designed to

provide students with a comprehensive understanding of web development technologies.

Throughout the course, students typically learn the basics of HTML, CSS, and client-side scripting with

JavaScript to create interactive and dynamic user interfaces. The integration of JSP into the curriculum

allows students to explore server-side programming, dynamic content generation, and the

development of web applications using Java. They gain proficiency in using JSP to connect the front-end

with back-end services and databases. Additionally, students learn to enhance their skills in creating

responsive and user-friendly web applications. By the end of the course, students are expected to

have a strong grasp of both client-side and server-side web development, enabling them to design and

implement robust, interactive, and scalable web applications using a combination of JSP and JavaScript

technologies. This skill set is particularly valuable for individuals pursuing careers in web

development and application programming.

Course Name: Core Course-12

Course Code: CMSACOR12T and CMSACOR12P
Topic Name: Theory of Computation

Course Outcome: The Theory of Computation course is designed to deepen students' understanding of the theoretical

foundations of computation and the limits of what can be computed. Throughout the course,

students typically explore formal languages, automata theory, and computational complexity. They

learn about different models of computation, including finite automata, pushdown automata,

and Turing machines, and study their relationships with formal language classes such as regular

and context-free languages. The course delves into the concept of algorithmic decidability, addressing

questions related to the solvability of problems and the existence of algorithms. Students also

engage with computational complexity theory, investigating the efficiency and inherent difficulty of

solving problems within various computational models. By the end of the course, students are

expected to develop a profound understanding of the theoretical underpinnings of computation,

enabling them to analyze the computational complexity of algorithms and reason about the

boundaries of computation in both practical and abstract contexts. This knowledge is crucial for

individuals pursuing careers in theoretical computer science, algorithm design, and advanced

software development.

Course Name: Core Course-13

Course Code: CMSACOR13T and CMSACOR13P
Topic Name: Artificial Intelligence

Course Outcome: The Artificial Intelligence (AI) course aims to impart students with a deep understanding of the

principles, methodologies, and applications of artificial intelligence. Throughout the course,

students typically explore key topics such as machine learning, natural language processing,

computer vision, and expert systems. They learn the foundations of AI algorithms, including

supervised and unsupervised learning, and gain practical experience in designing and implementing AI

models. The course often includes hands-on projects that involve solving real-world problems using AI

techniques. Additionally, students may delve into ethical considerations and societal impacts of

AI applications. By the end of the course, students are expected to be proficient in leveraging

AI technologies, capable of developing intelligent systems, and understanding the potential and

challenges associated with artificial intelligence. This knowledge prepares students for diverse career

paths in AI research, machine learning engineering, data science, and related fields where expertise in

artificial intelligence is increasingly in demand.

Course Name: Core Course-14

Course Code: CMSACOR14T and CMSACOR14P
Topic Name: Computer Graphics

Course Outcome: The Computer Graphics course is designed to equip students with a comprehensive understanding of

the principles, techniques, and applications in the field of computer graphics. Throughout the

course, students typically delve into fundamental concepts such as 2D and 3D transformations,

rendering, shading, and illumination models. They gain hands-on experience in programming

graphics applications and working with graphics libraries and tools. The course often covers topics like

raster graphics, vector graphics, and image processing. Students also explore computer

animation, virtual reality, and graphical user interface (GUI) design. By the end of the course,

students are expected to be proficient in creating visually appealing graphics, understanding the

underlying mathematical concepts, and applying their knowledge to solve problems in areas such as

gaming, simulation, design, and multimedia. This skill set is valuable for individuals pursuing

careers in graphics programming, user interface design, and other fields where a strong foundation in

computer graphics is essential.

Course Name: DISCIPLINE SPECIFIC ELECTIVE

Course Code: CMSADSE01T and CMSADSE01P
Topic Name: Microprocessor

Course Outcome: The Microprocessor course with a focus on 8085 and 8086 architectures is designed to equip

students with in-depth knowledge of these popular microprocessors and their applications.

Throughout the course, students typically explore the internal architecture, instruction set, and

programming techniques specific to the 8085 and 8086 microprocessors. They learn assembly

language programming, memory interfacing, and input/output operations for these processors.

Hands-on experience with simulators or actual hardware is often incorporated, allowing students to

implement and test programs on 8085 and 8086 microprocessor-based systems. The course may

cover advanced topics such as interfacing with peripherals, interrupt handling, and system-level

design using these microprocessors. By the end of the course, students are expected to be proficient in

programming and interfacing with both 8085 and 8086 microprocessors, enabling them to design and

implement embedded systems and understand the intricacies of microprocessor-based

architectures. This skill set is valuable for individuals pursuing careers in embedded systems

development, hardware design, and related fields where knowledge of specific microprocessor

architectures is crucial.

Course Name: DISCIPLINE SPECIFIC ELECTIVE

Course Code: CMSADSE02T and CMSADSE02P
Topic Name: Data Mining

Course Outcome: The Data Mining course with a focus on WEKA (Waikato Environment for Knowledge Analysis) is

designed to provide students with a comprehensive understanding of data mining techniques and

tools, with an emphasis on practical applications using WEKA. Throughout the course, students

typically learn the fundamental concepts of data mining, including data preprocessing,

classification, clustering, association rule mining, and feature selection. The integration of WEKA into

the curriculum allows students to gain hands-on experience in applying these techniques to real-

world datasets. They learn to navigate the WEKA environment, perform data analysis, and

interpret results. Additionally, students may explore advanced topics such as ensemble methods and

evaluation metrics for model performance. By the end of the course, students are expected to be

proficient in using WEKA for various data mining tasks, enabling them to extract valuable insights from

large datasets and make informed decisions in fields such as business intelligence, healthcare, and

research. This skill set is particularly valuable for individuals pursuing careers in data analysis, machine

learning, and business analytics.

Course Name: DISCIPLINE SPECIFIC ELECTIVE

Course Code: CMSADSE03T and CMSADSE03P
Topic Name: Cloud Computing

Course Outcome: The Cloud Computing course is designed to equip students with a comprehensive understanding of the

principles, technologies, and applications of cloud computing. Throughout the course, students typically

delve into the fundamental concepts of cloud computing, including virtualization, service models

(Infrastructure as a Service, Platform as a Service, Software as a Service), and deployment models

(public, private, hybrid, and community clouds). Students learn about popular cloud platforms

such as Amazon Web Services (AWS), Microsoft Azure, and Google Cloud Platform, gaining hands-

on experience in deploying and managing applications in the cloud. The course often covers topics like

cloud security, scalability, and cost management. By the end of the course, students are expected

to be proficient in designing, deploying, and managing cloud-based solutions, making them well-

prepared for roles in cloud architecture, system administration, and application development in the

rapidly evolving field of cloud computing. This skill set is crucial for individuals seeking careers

where the ability to leverage cloud technologies is essential for scalable and efficient computing

solutions.

Course Name: DISCIPLINE SPECIFIC ELECTIVE

Course Code: CMSADSE05T and CMSADSE05P
Topic Name: Digital Image Processing

Course Outcome: The Digital Image Processing course is designed to equip students with a thorough understanding of the

principles, techniques, and applications of processing digital images. Throughout the course,

students typically explore fundamental concepts such as image enhancement, restoration,

segmentation, and compression. They learn about various image processing algorithms and tools

used for manipulating and analyzing digital images. The course often covers topics like filtering, feature

extraction, and pattern recognition within the context of image processing. Students gain hands-

on experience in implementing these techniques using software tools and programming

languages. By the end of the course, students are expected to be proficient in applying image

processing methods to solve practical problems, enhance image quality, and extract valuable

information from digital images. This skill set is valuable for individuals pursuing careers in

computer vision, medical imaging, multimedia, and other fields where the manipulation and

analysis of digital images play a crucial role.

Course Name: DISCIPLINE SPECIFIC ELECTIVE

Course Code: CMSADSE06P
Topic Name: Project

Course Outcome: This option to be offered only in 6th Semester. The students will be allowed to work on any project

based on the concepts studied in core / elective or skill based elective courses. Typically a project-

focused course in Software Engineering or Artificial Intelligence is availed and designed to provide

students with hands-on experience in applying the theoretical concepts learned throughout their

coursework. In a Software Engineering project, students typically work collaboratively to design,

develop, and implement a software solution, emphasizing the entire software development life

cycle. This includes requirements analysis, system design, coding, testing, and deployment, while also

considering project management aspects. On the other hand, in an AI project, students often engage in

creating intelligent systems, developing machine learning models, and solving real-world problems

using AI techniques. They may explore diverse AI applications such as natural language processing,

computer vision, or recommendation systems. By the end of the project, students are expected to

showcase not only technical proficiency but also effective teamwork, project management

skills, and the ability to apply their knowledge to solve complex problems. These project

outcomes are valuable for preparing students to enter the workforce with practical experience,

demonstrating their ability to bring theoretical concepts into practical fruition in the fields of

Software Engineering or Artificial Intelligence.

Course Name: SKILL ENHANCEMENT COURSE

Course Code: CMSSSEC01M
Topic Name: Programming in Python

Course Outcome: Understand the basic syntax and structure of the Python programming language. Learn how to write
and execute simple Python programs. Explore various data types in Python, such as integers, floats,
strings, and booleans. Understand how to declare and manipulate variables. Learn about
control flow structures, including if statements, loops, and conditional statements. Understand how to
use these statements to control the flow of a program. Define and use functions to modularize
code. Explore function parameters, return values, and the concept of scope. Introduction to
fundamental data structures in Python, including lists, tuples, sets, and dictionaries. Learn how
to perform operations on these data structures. Understand how to read from and write to files using
Python. Explore file input/output operations. Learn the basics of exception handling to deal with
errors gracefully. Understand try, except, and finally blocks. Introduction to OOP principles,
including classes and objects. Learn how to create and use classes in Python. Understand how to use
Python modules and libraries to extend functionality. Explore commonly used libraries, such as NumPy
for numerical computing and matplotlib for data visualization. Introduction to web development using
frameworks like Flask or Django (if covered in the course). Understand the basics of creating web
applications with Python. Develop problem-solving skills using Python. Understand algorithmic
thinking and basic algorithm design. Introduction to version control systems, particularly Git. Learn
basic Git commands for collaborative coding and project management. Emphasize good coding
practices, code readability, and style conventions. Understand the importance of documentation.

Course Name: SKILL ENHANCEMENT COURSE

Course Code: CMSSSEC02M
Topic Name: R Programming

Course Outcome: The course in R Programming aims to impart students with a comprehensive understanding of the R

programming language and its applications in statistical analysis, data visualization, and data

manipulation. Throughout the course, students typically learn the fundamentals of R, including

syntax, data structures, and control flow. Emphasis is placed on statistical analysis using R, enabling

students to conduct hypothesis testing, regression analysis, and exploratory data analysis. The

course often covers data visualization techniques using packages like ggplot2, enhancing students'

abilities to communicate insights effectively. Students may also gain proficiency in data

manipulation tasks with tools like the dplyr package. Additionally, the course may introduce

concepts related to reproducibility and version control, fostering good coding practices. By the end of

the course, students are expected to be well-equipped to use R as a powerful tool for statistical

computing and data analysis in various domains, including academia, research, and industry.

DUM DUM MOTIJHEEL COLLEGE

Course Outcome or Learning Outcome

Three year B.A. /B.Sc. degree course

Under CBCS semester system

GENERAL COURSE IN COMPUTER SCIENCE

With effect from the session: 2018 – 2019

Course Code: CMSGCOR01T and CMSGCOR01P

Topic Name: Problem Solving with Computer

Course Outcome: From this course students will gain a deep understanding of the organization and components of a

computer system, including the CPU, memory, input/output devices, and the interconnection

structure. Learn about instruction sets, addressing modes, and the design principles of the

instruction set architecture. Understand how instructions are executed by the CPU. Explore the

design and microarchitecture of processors, including pipelining, instruction-level parallelism, and

techniques for improving CPU performance. Understand the memory hierarchy, including cache

memory, main memory, and secondary storage. Learn about memory management techniques and

their impact on system performance. Study the principles of input/output systems, including

I/O interfaces, interrupt handling, and data transfer mechanisms between the CPU and

peripherals. Explore bus systems and interconnection networks that facilitate communication

between different components of a computer system. Understand the principles of parallel and

distributed computing, including multi-core processors, parallel architectures, and the challenges

of distributed systems. Gain hands-on experience with assembly language programming to reinforce

the understanding of computer architecture concepts. Learn techniques for performance evaluation

and optimization of computer systems, including benchmarking, profiling, and tuning. Stay updated

with current trends and advancements in computer architecture, including emerging technologies and

architectures.

Course Code: CMSGCOR02T and CMSGCOR02P
Topic Name: DBMS

Course Outcome: The Database Management System (DBMS) course aims to equip students with the knowledge and

skills necessary to understand, design, and manage databases effectively. Students typically learn

fundamental concepts of database systems, including data modeling, normalization, and query

languages. They gain proficiency in designing relational databases, creating and manipulating

database schemas, and implementing complex queries using SQL. The course also covers topics

such as indexing, transaction management, and database security. Additionally, students are

introduced to various types of database models and gain insights into emerging trends in database

technologies. By the end of the course, students are expected to be capable of designing and

implementing robust database solutions, ensuring data integrity, and optimizing database

performance in real-world applications. The understanding of database management principles

acquired in this course is essential for students pursuing careers in software development, data

analysis, and other fields where efficient and organized data storage and retrieval are critical.

Course Code: CMSGCOR03T and CMSGCOR03P

Topic Name: OS

Course Outcome: The course integrating Operating System Theory with practical Linux applications is designed to offer

students a holistic understanding of both theoretical concepts and real-world implementation.

Throughout the course, students delve into the fundamental principles of operating systems,

covering topics such as process management, memory management, file systems, and system calls. The

practical aspect involves hands-on experience with Linux, enabling students to apply

theoretical knowledge to a Unix-like operating system. Students gain proficiency in using Linux

commands, writing shell scripts, and performing system administration tasks. The course often

includes projects where students configure, manage, and troubleshoot Linux systems, reinforcing

theoretical concepts in a practical context. By the end of the course, students are expected to possess a

solid theoretical foundation in operating systems while also being adept at navigating and utilizing Linux

environments for system-related tasks. This dual focus prepares students for careers in system

administration, software development, and related fields, where a comprehensive

understanding of both operating system theory and practical Linux applications is highly valuable.

Course Code: CMSGCOR04T and CMSGCOR04P

Topic Name: Computer System Architecture

Course Outcome: From this course students will gain a deep understanding of the organization and components of a

computer system, including the CPU, memory, input/output devices, and the interconnection

structure. Learn about instruction sets, addressing modes, and the design principles of the

instruction set architecture. Understand how instructions are executed by the CPU. Explore the

design and microarchitecture of processors, including pipelining, instruction-level parallelism, and

techniques for improving CPU performance. Understand the memory hierarchy, including cache

memory, main memory, and secondary storage. Learn about memory management techniques and

their impact on system performance. Study the principles of input/output systems, including I/O

interfaces, interrupt handling, and data transfer mechanisms between the CPU and peripherals.

Explore bus systems and interconnection networks that facilitate communication between different

components of a computer system. Understand the principles of parallel and distributed computing,

including multi-core processors, parallel architectures, and the challenges of distributed systems.

Gain hands-on experience with assembly language programming to reinforce the understanding of

computer architecture concepts. Learn techniques for performance evaluation and optimization of

computer systems, including benchmarking, profiling, and tuning. Stay updated with current trends and

advancements in computer architecture, including emerging technologies and architectures.

Course Code: CMSGDSE01T

Topic Name: Programming in JAVA

Course Outcome: Students will understand the basic syntax, data types, and control flow structures in Java, including

variables, loops, and conditional statements. Gain a solid foundation in OOP principles, including

classes, objects, inheritance, polymorphism, encapsulation, and abstraction. Familiarize yourself

with the Java Standard Library (Java API) and learn how to use pre-built classes and methods for

common programming tasks. Understand the concept of exceptions in Java and learn how to handle

errors and exceptions in a program. Explore basic GUI programming using libraries such as Swing or

JavaFX. Learn to create interactive and user-friendly applications. Gain proficiency in reading from and

writing to files, understanding file handling operations in Java. Learn about the Java Collections

Framework, including data structures such as lists, sets, and maps. Understand how to use these

structures for efficient data manipulation. Understand the basics of multithreading in Java, including

creating and managing multiple threads to achieve concurrent execution. Explore networking

concepts and how to implement networked applications in Java, including socket programming.

Course Code: CMSGDSE02T
Topic Name: Discrete Structures

Course Outcome: Students will understand the basics of set theory, including set operations, subsets, and set relations.

Apply set theory concepts to solve problems and model real-world situations. Learn the principles of

propositional logic, including logical operators, truth tables, and logical equivalences. Develop skills in

constructing and analyzing logical expressions. Extend logical reasoning to predicate logic, including

quantifiers and proofs. Understand how to express statements about elements in a set using

predicate logic. Acquire proficiency in various proof techniques, such as direct proofs, proof by

contrapositive, proof by contradiction, and mathematical induction. Explore fundamental concepts

in number theory, including divisibility, prime numbers, greatest common divisors, and modular

arithmetic. Understand counting principles, permutations, combinations, and the binomial theorem.

Apply combinatorial concepts to solve problems related to arrangements and selections. Study basic

concepts in graph theory, including vertices, edges, paths, cycles, and connectivity. Analyze and

solve problems related to graph representations. Explore the concepts of relations and functions,

including equivalence relations, partial orders, and injections/surjections. Understand how to

represent and analyze relationships between sets. Introduce the concept of finite state machines

and understand their application in modeling and solving problems related to computation.

Learn the basics of formal languages, regular languages, and finite automata. Understand how

automata theory is connected to the study of programming languages and computation.

Introduce basic concepts of algorithmic complexity and analyze the efficiency of algorithms in

terms of time and space complexity. Relate discrete structures to their applications in computer

science, such as algorithm design, database management, and network design.

Course Code: CMSGDSE03T

Topic Name: Software Engineering

Course Outcome: Understand the fundamental concepts and importance of software engineering in the development

life cycle. Explore the key activities involved in software engineering processes. Learn about

various models of SDLC, such as Waterfall, Agile, and Iterative models. Understand the strengths and

weaknesses of different development methodologies. Study the process of gathering, analyzing, and

documenting software requirements. Learn how to manage and prioritize requirements

throughout the project. Understand the principles of system design, including architectural design and

detailed design. Learn how to create design documentation and make design decisions. Explore best

practices for coding, including code readability, maintainability, and documentation.

Understand how to implement designs into executable code. Learn various testing techniques and

strategies to ensure software quality. Understand the importance of test planning and

test documentation. Study the challenges and techniques involved in software maintenance.

Understand version control and configuration management. Learn project management principles

specific to software engineering. Understand how to estimate project effort, schedule tasks, and

manage resources. Explore metrics for measuring software quality, productivity, and

performance. Understand how to use metrics for project tracking and improvement. Identify and

analyze potential risks in software projects. Learn risk mitigation and contingency planning

strategies. Understand collaborative development practices, including version control systems (e.g.,

Git). Learn about tools for collaboration, issue tracking, and continuous integration. Explore ethical

considerations in software engineering. Understand the responsibilities of software engineers in a

professional context. Emphasize the importance of clear and effective communication in software

development. Learn how to create and maintain project documentation.

Course Code: CMSGDSE04T
Topic Name: Computer Networks

Course Outcome: Define computer networks and understand their importance in modern computing. Explore the

historical development and evolution of computer networks. Study different network topologies and

their advantages and disadvantages. Understand various networking protocols and their roles in

communication. Explore the functionalities of the physical and data link layers of the OSI model. Learn

about error detection and correction mechanisms. Understand the role of the network layer in routing

and forwarding data. Study common routing algorithms and protocols. Explore the functions of

the transport layer in end-to-end communication. Learn about flow control, error recovery, and

congestion control mechanisms. Examine the application layer protocols and their role in

supporting network applications. Study common application layer protocols, such as HTTP, FTP, and

DNS. Understand the challenges and protocols associated with wireless and mobile

communication. Explore technologies like Wi-Fi, Bluetooth, and cellular networks. Learn about

common security threats in computer networks. Explore security mechanisms, such as firewalls,

encryption, and intrusion detection systems. Understand the principles of network management and

monitoring. Analyze real-world case studies of successful network implementations. Apply

theoretical knowledge to practical scenarios. Gain practical experience through hands-on labs and

projects. Configure and troubleshoot network setups to reinforce theoretical concepts.

Course Name: SKILL ENHANCEMENT COURSE

Course Code: CMSSSEC01M
Topic Name: Programming in Python

Course Outcome: Understand the basic syntax and structure of the Python programming language. Learn how to write
and execute simple Python programs. Explore various data types in Python, such as integers, floats,
strings, and booleans. Understand how to declare and manipulate variables. Learn about control
flow structures, including if statements, loops, and conditional statements. Understand how to use
these statements to control the flow of a program. Define and use functions to modularize code.
Explore function parameters, return values, and the concept of scope. Introduction to fundamental
data structures in Python, including lists, tuples, sets, and dictionaries. Learn how to perform
operations on these data structures. Understand how to read from and write to files using Python.
Explore file input/output operations. Learn the basics of exception handling to deal with errors
gracefully. Understand try, except, and finally blocks. Introduction to OOP principles, including
classes and objects. Learn how to create and use classes in Python. Understand how to use Python
modules and libraries to extend functionality. Explore commonly used libraries, such as NumPy for
numerical computing and matplotlib for data visualization. Introduction to web development using
frameworks like Flask or Django (if covered in the course). Understand the basics of creating web
applications with Python. Develop problem-solving skills using Python. Understand algorithmic
thinking and basic algorithm design. Introduction to version control systems, particularly Git. Learn
basic Git commands for collaborative coding and project management. Emphasize good coding
practices, code readability, and style conventions. Understand the importance of documentation.

Course Name: SKILL ENHANCEMENT COURSE

Course Code: CMSSSEC02M
Topic Name: R Programming

Course Outcome: The course in R Programming aims to impart students with a comprehensive understanding of the R

programming language and its applications in statistical analysis, data visualization, and data

manipulation. Throughout the course, students typically learn the fundamentals of R, including

syntax, data structures, and control flow. Emphasis is placed on statistical analysis using R, enabling

students to conduct hypothesis testing, regression analysis, and exploratory data analysis. The

course often covers data visualization techniques using packages like ggplot2, enhancing students'

abilities to communicate insights effectively. Students may also gain proficiency in data

manipulation tasks with tools like the dplyr package. Additionally, the course may introduce

concepts related to reproducibility and version control, fostering good coding practices. By the end of

the course, students are expected to be well-equipped to use R as a powerful tool for statistical

computing and data analysis in various domains, including academia, research, and industry.

	DUM DUM MOTIJHEEL COLLEGE
	Course Name: Core Course-1
	Course Name: Core Course-2
	Course Name: Core Course-3
	Course Name: Core Course-4
	Course Name: Core Course-5
	Course Name: Core Course-6
	Course Name: Core Course-7
	Course Name: Core Course-8
	Course Name: Core Course-9
	Course Name: Core Course-10
	Course Name: Core Course-11
	Course Name: Core Course-12
	Course Name: Core Course-13
	Course Name: Core Course-14
	Course Name: DISCIPLINE SPECIFIC ELECTIVE
	Course Name: DISCIPLINE SPECIFIC ELECTIVE (1)
	Course Name: DISCIPLINE SPECIFIC ELECTIVE (2)
	Course Name: DISCIPLINE SPECIFIC ELECTIVE (3)
	Course Name: DISCIPLINE SPECIFIC ELECTIVE (4)
	Course Name: SKILL ENHANCEMENT COURSE
	Course Name: SKILL ENHANCEMENT COURSE (1)

	DUM DUM MOTIJHEEL COLLEGE (1)
	With effect from the session: 2018 – 2019
	Course Code: CMSGCOR01T and CMSGCOR01P
	Topic Name: Problem Solving with Computer
	Course Code: CMSGCOR02T and CMSGCOR02P
	Topic Name: DBMS
	Course Code: CMSGCOR03T and CMSGCOR03P
	Topic Name: OS
	Course Code: CMSGCOR04T and CMSGCOR04P
	Topic Name: Computer System Architecture
	Course Code: CMSGDSE01T
	Topic Name: Programming in JAVA
	Course Code: CMSGDSE02T
	Topic Name: Discrete Structures
	Course Code: CMSGDSE03T
	Topic Name: Software Engineering
	Course Code: CMSGDSE04T
	Topic Name: Computer Networks
	Course Name: SKILL ENHANCEMENT COURSE
	Course Name: SKILL ENHANCEMENT COURSE (1)

