3.3 METRICS FOR PROJECT SIZE ESTIMATION

As already mentioned, accurate estimation of the problem size is fundamental to satisfactory
estimation of other project parameters such as effort, time duration for completing tll(‘)r()():‘-\t
and the total cost for developing the software. Before discussing appropriate nuirics to tj's;tij
mate the size of a project, let us examine what the term problem size means in the éon’tm(i (;f
software projects. The size of a project is obviously not the number of bytes that the S;;nr(,p

code occupies. It is neither the byte size of the executable code.

The project size is a measure of the problem complexity in terms of the effort and time required
to develop the product.

Currently, two metrics are popularly being used to estimate size: lines of code (LOC) and
function point (FP). The usage of each of these metrics in project size estimation has its own
advantages and disadvantages which are discussed in the following.

3.3.1 Lines of Code (LOC)

(LOC is the simplest among all metrics available to estimate project size. Consequently, this
“metric is extremely popular. This metric measures the size of a project by counting the number
of source instructions in the developed progran}. Obviously,(while counting the number of
source instructions, lines used for commenting the code and the header lines are ignored)
Determining the LOC count at the end of a project is very simple. However, accurate
estimation of the LOC count at the beginning of a project is very difficult. In order to esti-
mate the LOC count at the beginning of a project, one would have to make a systematic guess.

Scanned by CamScanner

62
Soﬁwaro Projl’,’Ct Managem;,m

and each module into submody]e,

Proj —— . i ,
oject managers usually divide the problem into modules,
approxjmately predicte

and so on, until the sizes of the different leaf-level modules can be
To be able to predict the LOC count for the various leaf-level modules sufficiently accurately,
past experience in developing similar products is very helpful. By using the estimation of th,
lowest level modules, project managers arrive at the total size estimation. However, LOC g
a measure of problem size has several shortcomings:
e LOC gives a numerical value of problem size that can vary widely w ith individual codin,
style — different programmers lay out their code in differegt ways. For example, ope
programmer might write several source instructions om & single line whereas another

might split a single instruction across several lines. Of course, this problem can be easiy

counting the language tokens in the program rather than the lines of code,
because the length of a program depends op

However. a more intricate problem arises

the choice of instructions used in writing the prograrm. Therefore, faven for the same
problem, different programmers might come up with programs having dlffe?rent LOC
counts. This situation does not improve evern if language tokens are counted in stead of

overcome by

lines of code.
ty alone. On the other hand, a good problem
size measure should consider the total effort needed to specify, design, code, test, etc,
and not just the coding effort. LOC, however, focuses on the coding activity alone; it
merely computes the number of source lines in the final program. We have already seen
that coding is only a small part of the overall software development activities. It is also
wrong to argue that the overall product development effort is proportional to the effort
required in writing the program code. This is because even though the design might be
very complex, the code might be straightforward and vice versa. In such cases, code
size is a grossly improper indicator of the problem size.

ly with the quality and efficiency of the code. Larger code
y better quality or higher efficiency. Some programmers
code as they do not make effective use of the available

likely that a poor and sloppily written piece of code
and efficient.

e LOC is a measure of the coding activi

e LOC measure correlates poor
size does not necessarily impl
produce lengthy and complicated

instruction set. In fact, it is very
might have larger number of source instructions than a piece that is neat

e LOC metric penalizes use of higher-level programming languages, code reuse, etc. The
paradox is that if a programmer consciously uses several library routines, then the LOC

ower. This would show up as smaller program size. Thus, if managers

count will be 1
(that is,

use the LOC count as a measure of the effort put in by different developers
productivity), they would be discouraging code reuse by developers!

o LOC metric measures the lexical complexity of a program and does not address the more
important but subtle issues of logical or structural complexities. Between two prograims
with equal LOC count, a program having complex logic would require much more effort
to develop than a program with very simple logic. To realize why this is so, consider the
effort required to develop a program having multiple nested loop and decision constructs
with another program having only sequential control flow.

o It is. very difficult to accurately estimate LOC in the final product from the problem
specification. The LOC count can only be accurately computed only after the code

Scanned by CamScann‘ér

3.3 Metrics for Project Size Estimation 63

has been fully developed. Therefore, the LOC! metric is of little use to the project
managers during project, planning, since project planning is carried ont even hefore any
development activity has started. This p(ms‘ihly is the biggest shortcoming of the LOC
metric from the project manager’s perspective.

3.3.2 Function Point Metric

Function point metric was proposed by Albrecht [1983]. This metric overcomes many of the
shortcomings of the LOC metric. Since its inception in late 1970s, function point metric has
been slowly gaining popularity. One of the important advantages of using the function point
metric is that it can be used to easily estimate the size of a software product directly from the
problem specification. This is in contrast to the LOC metric, where the size can be accurately
determined only after the product has fully been developed.

The conceptual idea behind the function point metric is that the size of a software product
is directly dependent on the number of different functions or features it supports. A software
product supporting many features would certainly be of larger size than a product with less
number of features. Each function when invoked reads some input data and transforms it to
the corresponding output data. For example, the query book feature (see Figure 3.2) of a
Library Automation Software takes the name of the book as input and displays its location
and the number of copies available. Similarly, the issue book and the return book features
produce their output based on the corresponding input data. Thus, a computation of the
number of input and output data values to a system gives some indication of the number of
functions supported by the system.

Book-name | Book—location

e

Input data
Y
QOutput data

J

\

Figure 3.2: System function as a map of input data to output data.

Albrecht postulated that in addition to the number of basic functions that a software
performs, the size is also dependent on the number of files and the number of interfaces.
Interfaces refer to the different mechanisms that need to be supported for data transfer with

Scanned by CamScanner

o Software P rnj(;c.t I\/Ianagemert

other external systems. Besides using the number of input and ()llL.[)lll (l:fi‘;\ vnh_ws. f”“Cti()“
point metric computes the size of a software product (in units of fum‘,l.loulpomts or Fpg
using three other characteristics of the product discussed above and shown in the f”“UWing
expression. ‘

Function point is computed in three steps. The first step is to cmnpntc_ the ””‘“Ullstqd
function point (UFP). In the next step, the UFP is refined to reflect the (hf.ferences in th
complexities of the different parameters of the expression for UFP computation (showy, be'
low). In the third and the final step, FP is computed by further refining UFP to accoupt for
the specific characteristics of the project that can influence the development effort.

UFP = (Number of inputs)*4 + (Number of outputs)*5 + (Number of inquiries)xq ,
(Number of files)*10 + (Number of interfaces)*10

The expression shows the computation of the unadjusted function points (UFP) as the weighte
sum of these five problem characteristics. The weights associated with the five characteristcg
were proposed by Albrecht empirically and was validated through data gathered from Many
projects.

The meaning of the different parameters of this expression is as follows:

1. Number of inputs: Each data item input by the user is counted. Data inputs should be

distinguished from user inquires. Inquiries are user commands such as print-ac count-balance,
Inquiries are counted separately. It must be noted that individual data items input by the

user are not simply added up to compute the number of inputs, but a group of related inputs

are considered as a single input. For example, while entering the data concerning an employee

to an employee payroll software; the data items name, age, sex, address, phone number, etc,

are together considered as a single input. All these data items can be considered to be related,

since they pertain to a single employee.

2. Number of outputs: The outputs considered refer to reports printed, screen outputs,
error messages produced, etc. While computing the number of outputs the individual data
items within a report are not considered, but a set of related data items is counted as one
output.

3. Number of inquiries: Number of inquiries is the number of distinct interactive queries
which can be made by the users. These inquiries are the user commands which require specific
action by the system.

4. Number of files: Each logical file is counted. A logical file implies a group of logically
related data. Thus, logical files include data structures and physical files.

5. Number of interfaces: Here the interfaces considered are the interfaces used to exchange
information with other systems. Examples of such interfaces are data files on tapes, disks,
communication links with other systems, etc.

The computed UFP is refined in the next step. The complexity level of each of the para-
meters are graded as simple, average, or complex. The weights for the different parameters
can then be computed based on Table 3.1. Thus, rather than each input being computed as
four function points, very simple inputs can be computed as three function points and very
complex inputs as six function points. |

Scanned by CamScanner

W»ﬁ L R e R L L R T B e

3.3 Metrics for Pl‘Oj_(;Ct SjZO Estimation 65

Table 3.1: Refinement, of function point entitics

Type " Simple Average Compler
Input(I) 3 4 6 ‘
Output (O) 4 5 7
Inquiry (E) 3 4 6
Number of files (F) T 10 15
Number of interfaces 5 7 10

A technical complexity factor (TCF) for the project is computed and the TCF is multiplied
with UFP to yield FP. The TCF expresses the overall impact of various project parameters that
can influence the development effort such as high transaction rates, response time requirements,
scope for reuse, etc. Albrecht identified 14 parameters that can influence the development
offort. Each of these 14 factors is assigned a value from 0 (not present or no influence) to 6
(strong influence). The resulting numbers are summed, yielding the total degree of influence
(DI). Now, TCF is computed as (0.6540.01*DI). As DI can vary from 0 to 84, TCF can
vary from 0.65 to 1.35. Finally, FP is given as the product of UFP and TCF. Thar is,

FP=UFP*TCF.

Feature point metric. A major shortcoming of the function point measure is that it does not
take into account the algorithmic complexity of a software. That is, the function point metric
implicitly assumes that the effort required to design and develop any two functionalities of the
system is the same. But, we know that this is normally not true. The effort required to develop
any two functionalities may vary widely. For example, in a library automation software, the
create-member feature would be much simpler compared to the loan-from-remote-library
feature. It only takes the number of functions that the system supports into consideration
without distinguishing the difficulty level of developing the various functionalities. To overcome
this problem, an extension of the function point metric called feature point metric has been
proposed.

Feature point metric incorporates algorithm complexity as an extra parameter. This pa-
rameter ensures that the computed size using the feature point metric reflects the fact that
the more is the complexity of a function, the greater is the effort required to develop it and
therefore its size should be larger compared to simpler functions.

Proponents of function point and feature point metrics claim that these metrics are
language-independent and can be easily computed from the SRS document during project
planning, whereas opponents claim that these metrics are subjective and require a sleight of
hand. An example of the subjective nature of the function point metric can be that the way
one would group logically related data items can be very subjective. For example, consider
that certain data employee-details consists of the employee name and employee address.
Ther}, it is possible that one can consider it as a single unit of data. Also, someone else can
consider the employees address as one unit and name as another. Therefore, there is sufficient

;cr?ﬁ for different project managers to arrive at different function point measures for the same
em.

Scanned by CamScanner

. -

66 M.,._,.,.-.,_.,_.u,«.f.w)
TECHNIQUES

ECT ESTIMATION

of various prniom pnr:mwt.urs is a hasic pro_)ect.. planning actnilt.y, The imDort
’ : ed include: project S12¢€; offort required to de"elop any
t

ot only help 10 quoting an approp. '

Estimation
for resource planning and s
g scheduhn 8

R,

project paramt
software, projec
project cost to
There are three
1. Empirical estimation te
9. Heuristic techniques
3. Analytical estimation techniques
an overview of the differe

estimat
1d cost. These
r but also form the basis
ies of estimation techniques:

Jsers that arc .
&1~ s AQ

t duration at estimates I

the custome

broad categor
chniques

ot categories of estimation techpj
q\les

In the following, we provide

Techniques

3.4.1 Empirical Estimation
aking an educated guess of the project p
ara.

Empirical vestimation techniques are based on m
meters. While using this technique, prior experience with development of similar product
Cts i’S

helpful. Although empirical estimation techniques are based on common sense, over the
have been formalized to certain extent ,Weyeirs,
: shal]

1ISCUSS t 0 orma i i i iri ' i]

and 3.5.2.

3.4.2 Heuristic Techniques

Heuristic techni
ques assume that the relationshi -
be modelled usi i : 1onships among the different proj :
ters are knowlilsT}%eS(;ltl}izbl(edmath; nm)tlcal expressions. Once the basic I()i;g:s;rlzgraz;eters i
value of the ba’Si r (dependent) parameters can be easily determi ent) parame-
c parameters in the math : y determined by substituti
models can be divided i : ematical expression. Diff Ry Ing the
model. ided into the following two classes: single Variabl:rrir(l)tdhleuncsltlc estimation
Single variable estimati : POCC EUL multivariable
imation models i ' ‘
a problem, usin . provide a means to esti :
, g some pre . : estimate th i .
product such as its sizep AVK')USly eStl.mated basic (independent) ch X desm.ed characteristics of
: smgle variable estimation model tak characteristic of the software
) akes the following form:

Estimated Parameter = ¢; * e®

= 5

timated (inde
, pendent variabl '
- e). E : '
ated. The dependent paramgte stimated parameter is the dependent
parameter to be esti-

etc, c .
P o r to be estimated could be effort j
_ , project duration, staff si
, staff size,

using data coll The values of
ot A8 ?cted from past projects (hi tbe constants c¢; and d
Pei), is an example of a s; s (historical data). Th 1 are usually determined
multivariable co ' of a single variable ¢ : e COCOMO model (di :
Vie cost estimation model takes tl?Stfels timation model el (discussed in

Estim .
ated resource = ¢; * ept 1o, g
‘ 1 Co * ep 2
D b

1) [)
| d 1 (')

_ a'teda and ¢ :
P 1, Cz,‘ dl, dz, .~8re com Ch&raCteriSt' ; ;
v stants. Mul 1cs of the software already esti
y esti-

tivariabl)
e -
estimation models are expected to

Scanned by CamScahher

IONATAMA AL LU LUDHIILD CLLIND 7R pNRa ranpy o

3.6 COCOMO-—A HEURISTIC ESTIMATION

TECHNIQUE
COCONMO (COnstructive COst estimation MOdel) was proposed by Boehm, 1981. Boely,,
postulated that any software development project can be classified into any one of tj,

following three categories based on the development complexity: organic, semidetached, apq
vmhf)ddvd. In order to classify a product into the identified categories, Boehm requires us ¢,
consider not only the characteristics of the product but also those of the development teay,
and ‘(le\'.elopmem environment. Roughly speaking, the three product classes correspond tq
application, utility and system programs, respectively. Normally, data processing programs!
are COI?Sidered to be application programs. Compilers, linkers, etc. are utility programs.
Operating systems and real-time system programs, etc. are system programs. System pro-
grams interact directly with the hardware and typically involve meeting timing constraints
and concurrent processing. '

Brooks, 1975 states that utility programs are roughly three times as difficult to write
as application programs, and system programs are roughly three times as difficult as utility
programs. Thus, according to Brooks, the relative levels of product development complexity
for the three categories (application, utility and system programs) of products are 1:3:9.

Boehm’s [1981] definitions of organic, semidetached, and embedded systems are elaborated

as follows:
1. Organic: We can consider a development project to be of organic type, if the project
deals with developing a well-understood application program, the size of the development

1A data processing program is one which processes large volumes of data using a simple algorithm. An
example of a data processing application is a payroll software. A payroll software computes the salaries of
the employees and prints cheques for them. In a payroll software, the algorithm for pay computation is fairly
simple. The only complexity that arises while developing such a software product arises from the fact that the

pay computation has to be done for a large number of employees.

Scanned by CamScanner

i.(j,_(:ggp_l\,[_o:l_\v&ﬂf}i' ‘Cljf‘!‘nl ation Technique 69

e e e e

team is reasonably small, and the te

am members are experionced : -
of projicts. mbers are experienced in developing similar types

2. Semidetached: A development project can he

; considered to be emidet ac
if the development team consists of I to be of semidetached type,

A mixture of experienc ' '

=R ¥perienced and inexperienced staff. Tes

' y 7 > T e R e S
members may have lmm',c(] experience on related systems but may be unfamiliar with s
aspects of the system being developed, S ‘ T o

3. Embedded: A development project is considered to be of embedded type, if the software

s;l(gr;it;1)01:;flloli)r(giozli‘tgb?]e}iilgt.C()uplcd to complex hardware, or if stringent regulations on the

Observe tha.t. Boehm in additifm-to considering the characteristics of the product being
developed, cons@ers the chara‘ct.erlstlcs of the team members in deciding the category of the
development project. Thus, a simple data processing program may be classified as semide-
tached if the team memb.ers are inexperienced in the development of similar products. For
the three product categories, Boehm provides different scts of expressions to predict the effort
(in units of person-months) and development time from the size estimation given in KLOC
(Kilo Lines of Source Code). One person-month is the effort an individual can typically put in
a month. This effort estimate takes into account the productivity losses that may occur due
to lost time such as holidays, weekly offs, coffee breaks, etc.

Note that effort estimation is expressed in units of person-months (PM). Person-month
(PM) is considered to be ‘an appropriate unit for measuring effort because developers are
typically assigned to a project for a certain number of months. The person-month unit indicates
the work done by one person working on the project for one month. It should be carefully
noted that an effort estimation of 100 PM does not imply that 100 persons should work for
1 month. Neither nor does it imply that 1 person should be employed for 100 months. The
effort estimation simply denotes the area under the person-month curve (see Figure 3.3) for
the project. The plot in Figure 3.3 shows that different number of personnel may work at

3

Number of persons -
working on the project

T

- Time in months

Figure 3.3: Person-month curve.

s typical in a practical industry scenario. The

different point in the project development, as i n integral

number of personnel working on the project usually increases and decreases by a

Scanned by CamScanner

- . .
70 Software Project Man.
— == - “Hages,
\:Jg.:,t
\.
- t o 3 PR s ehall clabhwwwia 30 Qoarmd:- = -
number. resulting in the sharp edges in the plot. We shall elaborate in Section 351,
- ‘ e
3 £ ~rl s r e tho rirrcts Aevelonmens o A S, S 2
number of persons to work at any time on the product development is determined. .

n should be dane thronogh thras cs
e L ; s i L 4 -

According to Boehni. software cost estimation shot lone through thr .
COCOMO., intermediate COCOMO. and complete COCOMO. We discuss these s,

follows:

3.6.1 Basic COCOMO Model

The basic COCOMO model gives an’approximate estimate of the project parameters +,

basic COCOMO estimation model is given by the following expressions:

Effort = a; x (KLOC)** PM

E

Tdev = I, x (Effort)™ Months

Where
{(a) KLOC is the estimated size of the software product expressed in Kilo Lines of Cg oy
(b) ay.az.b;.by are constants for each category of software products.
(c) Tdev is the estimated time to develop the software, expressed in months,

(d) Effort is the total effort required to develop the software product. expressed in Persen
months (PMs).

According to Boehm, every line of source text should be calculated as one LOC irrespectin=
of the actual number of instructions on that line. Thus, if a single instruction spans several Bres
(say n lines), it is considered to be nL.OC. The values of a;.as. b;. b for different categoriss of
products as given by Boehm [1981]. He derived the above expressions by examining historica]

data collected from a large number of actual projects. The theories given by Bochm were:

Estimation of development effort
For the three classes of software products, the formulas for estimating the efort based on &
code size are shown below:

Organic : Effort = 24(KLOC)™% PM

Semidetached : Effort 3.0(KLOC)*2 PM
Embedded : Effort = 3.6(KLOC)*® PM

Estimation of development time
For the three classes of software products, the formulas for estimating the development time

based on the effort are given below:

Organic : Tdev = 2.5(Effort)®3% Months
Semidetached : Tdev = 2.5(Effort)?3° Months
Embedded : Tdev = 2.5(Effort)°32 Months

Scanned by CamScanner

2:-6“_‘(:,0(_;01\/]0-:1\ Heuristic Estimation Technique

—————————————— c Tstimation lechnique 71

Wtc can gain some ll{Slglxt, into the basic COCOMO model, if we plot the estimated charac- -
teristics for different. software sizes. Figure 3.4 shows a plot of estim

1 ated effort versus product
- - - 4 ~(i > 2 oy . 2

g size. From I.lgmc. L ‘.1* we eall observe that the effort is somewhat superlinear (slope of the
L curve = 1) in the size of the software product.

expression 15 1‘noro than 1. Thus, the effort required to develop a product increases rapidly
with project sizc. However, observe that the increase in effort with size is not as bad as that

was portrn.yeld in Chapter 1. The reason for this is that COCOMO assumes that projects are
carcfully designed and developed by using software engineering principles. ;

This is because the exponent in the effort

(B —
2|

A 5 ‘5

|

1

4 |

A

5 |
sl !
Q | 1
g : |
Q]

i) 1
" !
BT 2|
- i
0 i
+ '1

. 1

t > "‘

Size . - ; \

s

Figure 3.4: Effort versus product size.

The development time Versus the product size in KLOC is plotted in Figure 3.5. From
Figure 3.5, we can observe that the development time is a sublinear function of the size of the

- product. That is, when the size of the product increases by two times, the time to develop
the product does not double but rises moderately. It may appear surprising that the duration

curve does not increase superlinearly. The apparent anomaly can be explained by the fact

that COCOMO assumes that a project is carried out not by a single person but by a team of
developers. ‘ :

It is important to note that the effort and duration estimations obtained using the CO-
COMO model imply that if you try to complete the project in a time shorter than the estimated

duration, then the cost will increase drastically. But, if you complete the project over 2 longer

period of time than that estimated, then there is almost no decrease in the estim__atedcost

‘value. The reasons for this are discussed in Section 3.8. Thus, we can consider. that trhe_"co_m-'

i puted effort and duration values to indicate the following.

effort and duration values computed by COCOMO are the values for doing the work n. |

the shortest time without undul‘yiincreasing manpower cost.

Scanned by Cam‘S‘cérnner’ |

3.6 COCOMO--A Heuristic pey; i

3.6 COCOMO--A Heuristic V“!s_t\l-l'}]“!}tlﬂll chchniq!l(‘ L

rermine the stafling level 1y 4 o '

cotfiine ’1 ‘ (.mh](}(l. by a sinple division.

problem in more detail in Sectioy, 3.8, From (}e li I

clear that the simple division approach o obtain tl(s
0 he st

However, we are Koing to examine the staffing
1 in Section 3.8 it would become
afl size is highly improper
gxample 3.1 Assume that (e size of an OTganic type sof .
be 32,000 lines of source code, Assume that o ot
15.000 per month. Determine the effort r

development time, and the cost to deve

are product has been estimated to
salary of software developers is Rs.
lop the software product, the nominal

the average
cquired to deve
lop the Product,.
From the basic COCOMO estimation formu]
Effort = 2.4 x (32)"% = 91 pM

Nominal development time = 2.5 x (91)0-38

a for organic software;

= 14 months

Cost required to develop the product = 91 x 15,000 = Rs. 1 465 000
. 1,465,

3.6.2° Intermediate COCOMO

The basic COCOMO model assumes that effort and development time are functions of the
product size alone. However, a host of other project parameters besides the product size affect
the effort required to develop the product as well as the development time. Therefore, in order
to obtain an accurate estimation of the effort and project duration, the effect of all relevant
parameters must be taken into account. The intermediate COCOMO model recognizes this
fact and refines the initial estimate obtained using the basic COCOMO expressions by using
a set of 15 cost drivers (multipliers) based on various attributes of software development. For
example, if modern programming practices are used, the initial estimates are scaled downward
by multiplication with a cost driver having a value less than 1. If there are stringent reliabi.lity
requirements on the software product, this initial estimate is scaled upward. Boehm requires
the project manager to rate these 15 different parameters for a particular project ona scale
of one to three. Then, depending on these ratings, he suggests appropriate cost driver values
which should be multiplied with the initial estimate obtained using the basm COCOMO. In
general, the cost drivers can be classified as being attributes of the following items:

1. Product: The characteristics of the product that are considered include the inherent com-
plexity of the product, reliability requirements of the product, etc.

2. Computer: Characteristics of the computer that are considered include the execution
speed required, storage space required, etc. -

3. Personnel: The attributes of development personnel that are considered include the ex-
perience level of personnel, programming capability, analysis capability, etc.

4. Development environment: Development environment attributes caimpture _the (ile\./elglpl)-
ment facilities available to the developers. An important parameter that is (;on51dere is the
sophistication of the automation (CASE) tools used for software development.

We have discussed only the basic ideas behind the COCOMO model. A detailed discussion

on the COCOMO model are beyond the scope of this book and the interested reader may refer
[Boehm, 81]. |

Scanned by CamScanner

Software Project N
7d Software Project Managy,,,
, g

y
) . »)‘ 2 -'v‘ .
3.6.3 Complete COCOMO

, 3) B e 38 Y 1 a "
A major shortcoming of both the basic and the intermediate ¢ OCOMO mode
consider a software product as a single homogencous entity. However, most |
made up of several smaller subsystems, These subsystems may have widely dif

Is i that o
ATEe SVstey, ‘11"
D4

ferent clmructo;
achg,

\
Ystey

1y
gh, foy

isties, For example, some subsystems may be considered as organic type, some Semidet
and some embedded. Not ouly that the inherent development complexity of the stbg
may be ditferent, but also for some subsystem the reliability requirements may be hi
some the development team might have no previous experience of similar developme (
S0 ou. The complete COCOMO model considers these differences in characteristicg of th,
subsystems and estimatos the effort and development time as the sum of the estimates fo, the
ndividual subsystems. The cost of cach subsystem is estimated separately. This APProggy,
veduces the wargin of erpor in the final estimate.

Let us consider the follm\ving development project as an example application of the com,
plete COCOMO model, A distributed Management Information System (MIS) product f,

an organization having offices at several places across the country can have the following sub,.
components:

l‘lt, a

* Database part

* Graphical User Interface (GUI) part
¢ Communication part

Of these, the communication part can be considered as embedded software. The databage
part could be semidetached software, and the GUI part organic software. The costs for these
three components can be estimated separately, and summed up to give the overall cost of te
system.

To improve the accuracy of their results, the different parameter values of the model cap he
fine-tuned and validated against an organization’s historical pro ject database to obtain more
accurate estimations. Estimation models such as COCOMO are not accurate and lack 3 full
scientific justification. Still, software cost estimation models such as COCOMO are required
for an engineering approach to software project management. Companies consider computed
estimates to be satisfactory, if these are within about 80% of final cost. Although these

estimates are gross approximations—without such models, one
to rely on. ’ '

3.6.4 COCOMO 2

Since the time that COCOMO estimation model proposed in the early 1980s, both the software
development paradigm and problems have undergone a sea change. The present day software
projects are much larger in size and reuse of existing software to develop new products has

become pervasive. This has given rise to component-based development. New life cycle models

and development paradigms are being deployed for web-based and component-based software.

During the 1980s rarely any program was interactive, and graphical user interfaces were almost
non-existent. On the other hand, most of the present day software is highly interactive a{ld
has elaborate graphical user interface. To make COCOMO suitable in the changed scenario,
Boehm proposed COCOMO 2 [Boehm, 95 ' ' i
COCOMO 2 provides three increasingly detailed cost estimation models. These can be
used to estimate project costs at different phases of the software. As the project progresses
through these models can be applied at the different stages of the same project. ‘

has only subjective judgements

Scanned by CamScanner

i
3.6 COCOMO-—A Heuristic Estimnation Technigue)

< 2 " L ' O calipnts
1. Application composition: This model ng the name suggests, can be uged to

cost for protolyping, ez, to resolve usoer interface jpgnes,

2. Early design: This supports estimation of cost, at the architectural design stage.

3. Post-architecture stage: This provides cost, estimation during detailed design and coding
stage.

The post-architectural model can be considered as an update of the original COCOMO.
We discuss these three models in the following,

Application composition model

The application composition model is based on counting the number of screens, reports and
3GL modules. Each of these components is considered to be an object (this has nothing to do

with the concept of objects in the object-oriented paradigm). These are used to compute the
object points of the application.

Effort is estimated in the application composition model as follows:

1. Estimate the number of screens, reports and 3GL com

ponents from an analysis of the
SRS document.

2. Determine the complexity level of each screen and re
medium, or difficult. The complexity of a screen or
of tables and views it contains.

port, and rate these as either simple,
areport is determined by the number

Table 3.2: SCREEN complexity assignments for the number of views and data tables

Number of views Tables <4 Tables < 8 Tables > 8

<3 simple simple medium
3-7 simple medium difficult
>8 medium difficult difficult

3. Use the weight values in Tables 3.2 to 3.4.

Table 3.3: Report complexity assignments for the number and source of the data tables

Number of sections Tables < 4 Tables < 8 Tables > 8

Oor1l simple simple medium
20r3 simple medium difficult
4 or more medium difficult difficult

The weights are supposed to correspond to the amount of effort required to implement
an instance of an object at the assigned complexity class.

Determine the number of object points
Add all the assigned com

plexity values for the object instances together—The Object
Count.

Estimate percentage of reuse expected in the system
developed software that will b
Point count (NOP),

(reuse refers to the amount of pre-
e used within the system). Then, evaluate New Object-

Scanned by CamScanner

s Software Project M : §
e i)
% _ — Q}Q

(Object-Points) (100 — % of reuse)
NOF = == 100

Table of complexity weights for each class for each object type

Table 3.4: .
“”5!)7«3(:{, type Simple Medium Difficult
Screen 1 2 3
=
Report 2 ¥ 8
— 10

3GL component
6. Determine a productivity rate, PROD = NOP/ person-month, using Table 3.5. i
productivity depends on the experience of the developers as well as the maturity of hﬁ

CASE environment used.
7. Finally, the person-month is computed as E=NOP/PROD.

Table 3.5: Productivity table

Developers’ experience Very low Low Nominal High Very high
CASE maturity Very Low Low Nominal High Very High

PROD 4 T 13 25 50

Early design model

'Ié}f unadjusted fl.mction points (UFP) are counted and converted to Source Lines of Coq

l(inesog)élggaﬁtyplcal programming environment, each UFP would correspond to about 12;

ki » 29 lines of C++, or 320 lines of assembly code. Seven cost drivers that characteriz ‘
Post-architecture model are used. These are rated on a seven points scale. The cost driver:

include product reliability and complexi i
: plexity, the extent of reuse, platform di
experience, CASE support, and schedule. i i

The effort is then calculated using the following formula:

Personyg|

Effort = KSLOC x II; costdriver;

Post—architecture model

3.7 HALSTEAD’S SOFTWARE SCIENC

ANALYTICAL TECHNIQUE Al

Halstead’s soft ; '

: ware sclence is an analvt; . : Foih

development ytical technique to me o Ji

7 p §§t cost of software products. Halstead used a fewas;lrriisiﬁl ievelopment o m;d
7 ; rogram parameters {¢

Scanned by CamScanner

y(’ Software S(,‘!"“”‘ An Analytical Technlqgue 77

]]“"X],r‘.f;hl()lm for over nll])In;,',l:’l]ll lenpgth, potential minimum volume, actual volume,
(,[n]’ b | effort and tlt‘\f«'lu]nm'n(, Limne,
f wily

i jyen Progrim, let 71 be the l§um|wr of unique operators used in the program, 7p
for I;.hvr of unique operands used in the program, Ny be the total number of operators
) pr(’li”””‘ and Ny be the total number of operands nged in the program. :

’rh (he terms o]u:m,/.ors. and ()]")(‘,’I‘('I.’I”‘L(l.‘i }m,‘vu intuitive meanings, a precise definition
L(:l-ms is n(:nd(?’} 'U avoid ambiguities, But, unfortunately we would not be able
i {hes . 8 I,ru('.i.‘i(l 'dchmtum of I,h(em:. l.vgo terms. There is no general agreement among
on what is the most. meaningful way to define the operators and operands for

1 "rﬁ.ogrmﬂl"i“g languages. However, a few general guidelines regarding identification
(liﬁ«zrﬂl"’t(Jlrs and operands for any programming language can be provided. For instance,
Sf oI"’r“l’t arithm‘"“C» and]ogxca! operators are usually counted as-operators. A pair of
pelts a5 well as a block begin—block end pair, are considered as single operators. A
aren® " sidered to be an operator, if it is used as the target of a GOTO statement. The
is Covl‘if . then ... else ... endif and a while ... do are considered as
Cm]st,ruct& Jtors. A sequence (statement termination) operator ’; is considered as a single
sngle © CrSubroutine declarations and variable declarations comprise the operands. Function
oper® 0 function call statement is considered as an operator, and the arguments of the
pame 1 : || are considered as operands. However, the parameter list of a function in the
petion fdamtion statement is not considered as operands. We list below what we consider
nCtlotILe (;ct of operators and operands for the ANSI C language. However, it should be

o be that there is considerable disagreement, among various researchers in this regard.

reﬂlized
rators and Operands for the ANSI C Language

e
2;6 following is a suggested list of operators for the ANSI C language:
([ok 4 = T L k[- K> <> &= o= s

3 g'l," | &% [| = *= /= Y= 4= -= K= >>= g= "= |=: ? { ;
;:ASE DEFAULT IF ELSE SWITCH WHILE DO FOR GOTO CONTINUE BREAK RETURN
and a function name in a function call

Operands are those variables and constants which are being used with operators in expres-
dons. Note that variable names appearing in declarations are not considered as operands.

Example 3.2 Consider the expression a = &b ;
2, b are the operands and =, & are the operators.

\

Example 3.3 The function name in a function definition is not counted as an operator.
int func (int a, int b)
{
}
F
0orp the abqve example code, the operators are: {}, () We do not consider func, a, and b as
Perands, since these are a part of the function definition.
Bample 3.4 G,

; ate cont nsider the function call statement: func (a, b);. In this, func ’,’ and
nsidered as operators and variables a, b are treated as operands.

S

Scanned by CamScanner

